Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Crit Care ; 26(1): 183, 2022 06 18.
Article in English | MEDLINE | ID: covidwho-1894497

ABSTRACT

BACKGROUND: Clarithromycin may act as immune-regulating treatment in sepsis and acute respiratory dysfunction syndrome. However, clinical evidence remains inconclusive. We aimed to evaluate whether clarithromycin improves 28-day mortality among patients with sepsis, respiratory and multiple organ dysfunction syndrome. METHODS: We conducted a multicenter, randomized, clinical trial in patients with sepsis. Participants with ratio of partial oxygen pressure to fraction of inspired oxygen less than 200 and more than 3 SOFA points from systems other than the respiratory function were enrolled between December 2017 and September 2019. Patients were randomized to receive 1 gr of clarithromycin or placebo intravenously once daily for 4 consecutive days. The primary endpoint was 28-day all-cause mortality. Secondary outcomes were 90-day mortality; sepsis response (defined as at least 25% decrease in SOFA score by day 7); sepsis recurrence; and differences in peripheral blood cell populations and leukocyte transcriptomics. RESULTS: Fifty-five patients were allocated to each arm. By day 28, 27 (49.1%) patients in the clarithromycin and 25 (45.5%) in the placebo group died (risk difference 3.6% [95% confidence interval (CI) - 15.7 to 22.7]; P = 0.703, adjusted OR 1.03 [95%CI 0.35-3.06]; P = 0.959). There were no statistical differences in 90-day mortality and sepsis response. Clarithromycin was associated with lower incidence of sepsis recurrence (OR 0.21 [95%CI 0.06-0.68]; P = 0.012); significant increase in monocyte HLA-DR expression; expansion of non-classical monocytes; and upregulation of genes involved in cholesterol homeostasis. Serious and non-serious adverse events were equally distributed. CONCLUSIONS: Clarithromycin did not reduce mortality among patients with sepsis with respiratory and multiple organ dysfunction. Clarithromycin was associated with lower sepsis recurrence, possibly through a mechanism of immune restoration. Clinical trial registration clinicaltrials.gov identifier NCT03345992 registered 17 November 2017; EudraCT 2017-001056-55.


Subject(s)
Clarithromycin , Sepsis , Administration, Intravenous , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Humans , Multiple Organ Failure/complications , Multiple Organ Failure/drug therapy , Oxygen/therapeutic use , Sepsis/complications
2.
J Infect Chemother ; 28(7): 948-954, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1851524

ABSTRACT

INTRODUCTION: Macrolide antibiotics have immunomodulatory properties which may be beneficial in viral infections. However, the precise effects of macrolides on T cell responses to COVID, differences between different macrolides, and synergistic effects with other antibiotics have not been explored. METHODS: We investigated the effect of antibiotics (amoxicillin, azithromycin, clarithromycin, and combined amoxicillin with clarithromycin) on lymphocyte intracellular cytokine levels and monocyte phagocytosis in healthy volunteer PBMCs stimulated ex vivo with SARS-CoV-2 S1+2 spike protein. A retrospective cohort study was performed on intensive care COVID-19 patients. RESULTS: Co-incubation of clarithromycin with spike protein-stimulated healthy volunteer PBMCs ex vivo resulted in an increase in CD8+ (p = 0.004) and CD4+ (p = 0.007) IL-2, with a decrease in CD8+ (p = 0.032) and CD4+ (p = 0.007) IL-10. The addition of amoxicillin to clarithromycin resulted in an increase in CD8+ IL-6 (p = 0.010), decrease in CD8+ (p = 0.014) and CD4+ (p = 0.022) TNF-alpha, and decrease in CD8+ IFN-alpha (p = 0.038). Amoxicillin alone had no effect on CD4+ or CD8+ cytokines. Co-incubation of azithromycin resulted in increased CD8+ (p = 0.007) and CD4+ (p = 0.011) IL-2. There were no effects on monocyte phagocytosis. 102 COVID-19 ICU patients received antibiotics on hospital admission; 62 (61%) received clarithromycin. Clarithromycin use was associated with reduction in mortality on univariate analysis (p = 0.023), but not following adjustment for confounders (HR = 0.540; p = 0.076). CONCLUSIONS: Clarithromycin has immunomodulatory properties over and above azithromycin. Amoxicillin in addition to clarithromycin is associated with synergistic ex vivo immunomodulatory properties. The potential benefit of clarithromycin in critically ill patients with COVID-19 and other viral pneumonitis merits further exploration.


Subject(s)
COVID-19 Drug Treatment , Clarithromycin , Amoxicillin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Cytokines , Humans , Interleukin-2 , Macrolides/pharmacology , Retrospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Trop Biomed ; 38(3): 343-352, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1404404

ABSTRACT

Outbreak of SARS-CoV-2 has been declared a pandemic, which is a serious threat to human health. The disease was named coronavirus disease 2019 (COVID-19). Until now, several vaccines and a few drugs have been approved for the prevention and treatment for COVID-19. Recently, the effect of some macrolides including clarithromycin (CAM) on COVID-19 has attracted attention. CAM is known to have diverse effects including immunomodulatory and immunosuppressive effects, autophagy inhibition, steroid sparing effect, reversibility of drug resistance, antineoplastic effect, antiviral effect as well as bacteriostatic/bactericidal effect. Many patients with COVID-19 died due to an overwhelming response of their own immune system characterized by the uncontrolled release of circulating inflammatory cytokines (cytokine release syndrome [CRS]). This CRS plays a major role in progressing pneumonia to acute respiratory distress syndrome (ARDS) in COVID-19 patients. It is noteworthy that CAM can suppress inflammatory cytokines responsible for CRS and also has anti-SARS-CoV-2 effect. Considering the rapidly progressive global disease burden of COVID 19, the application of CAM for treating COVID-19 needs to be urgently evaluated. Recently, an open-labeled non-randomized trial using CAM for treating COVID-19 (ACHIEVE) was initiated in Greece in May, 2020. Its results, though preprint, indicated that CAM treatment of patients with moderate COVID-19 was associated with early clinical improvement and containment of viral load. Thus, treatment with CAM as a single agent or combined with other anti-SARS CoV-2 drugs should be tried for treating COVID-19. In this article, we discussed the significance and usefulness of CAM in treating COVID-19.


Subject(s)
COVID-19 Drug Treatment , Clarithromycin/therapeutic use , Drug Repositioning , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Azithromycin/therapeutic use , Clarithromycin/pharmacology , Humans , Hydrogen-Ion Concentration , Immunologic Factors/pharmacology , SARS-CoV-2/drug effects
4.
Bratisl Lek Listy ; 122(2): 101-110, 2021.
Article in English | MEDLINE | ID: covidwho-1073651

ABSTRACT

BACKGROUND: SARS-CoV-2, which started in Wuhan and later affected the whole world, is the most important disease of the world today. Many ways to inhibit SARS-CoV-2 virus are sought to prevent the spread of this virus. Azithromycin and clarithromycin are considered for the treatment of the SARS-CoV-2 virus, which has a high similarity to previous colonic diseases. AIM: We aimed to determine whether azithromycin and clarithromycin, the RNA-dependent RNA polymerase protein inhibitor used in the treatment of COVID-19, is effective against SARS Cov-2 in silico. RESULTS AND CONCLUSION: The 503 analogues of azithromycin and clarithromycin were studied to target SARS-CoV-2 the RNA-dependent RNA polymerase protein inhibition. Maestro program was used to compare the inhibition activities of these analogues. A detailed comparison was made using the numerical value of many parameters obtained. ADME / T properties were then examined to determine the effects and reactions of analogues on human metabolism. In this study, the SARS-CoV2 virus is 6NUR and 6NUS, which is the RNA-dependent RNA polymerase protein. Among these proteins, the best inhibitor among the 503 analogues according to the docking score parameter was 9851445 with a great difference. This analogue was an analogue of azithromycin (Tab. 3, Fig. 6, Ref. 58).


Subject(s)
Azithromycin/therapeutic use , COVID-19 Drug Treatment , Clarithromycin/therapeutic use , Antiviral Agents/pharmacology , Azithromycin/pharmacology , Clarithromycin/pharmacology , Humans , RNA, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL